전체 글: 407개의 글

[광명/철산] 파스타 피자 스테이크 맛집 - 더 소잉 팩토리

Posted by ironmask84
2017. 7. 19. 23:55 생각과 일상/맛집


저 또한 낯선 동네에서 식사를 할 일이 생기면 웹 검색을 통해 블로그에서 맛집을 찾곤 하는데요.

본격! 맛집 포스팅 시작을 하게 된 첫 글입니다. ^^

얼마전에 철산에서 깔끔한 인테리어로 분위기 좋고 전망 좋고 맛도 좋은 레스토랑을 한 군데 발견했습니다. ㅎㅎ

"더 소잉 팩토리" 라는 이태리 레스토랑 인데요. 


  입구는 이렇게! 들어가 봅시다!  


  2인 세트 메뉴는 대충 이렇습니다.  


  넓직넓직하고 인테리어 깔끔합니다.  


  정식 메뉴판을 못찍었는데 대략 가격은 2~3만원대  



자, 이제 제가 먹은 요리 실물을 보여드려야겠죠!
2인 세트로 먹으려다가 양이 좀 더 많은 목살스테이크를 주문하려고 따로 주문~~


  식전빵은 1번 리필이 무료로 가능!!  

  풍기 리코타 샐러드 - 버섯과 마늘 맛이 꽤 좋음.  


  까르보나라 - 비쥬얼 만큼 맛도 풍부한 맛!  


  목살스테이크 - 돼지고기여서 양이 좀 많아요 ㅋㅋ  
  소는 아니지만 육즙과 칼질하는 기분   




레스토랑 위치는 철산역 1번출구로 나와서 조금 직진하면 신한은행 건물 14층에 있습니다.

바깥 사진은 못찍었는데 14층이라 전망도 좋네요^^



주차는 철산역 바로 앞에 노상공영주차을 이용하려 하였으나...

역시 주말 저녁엔 자리가 너무 없더라구요... 

조금 더 멀리 찾으러 가다보니... 공영주차장을 벗어난??

어쩔 수 없이 철산도서관 맞은편 갓길에 불법?!주차를 이용한 무료주차를 하였네요 ㅎㅎ...





 

머신러닝을 알린 알파고의 알고리즘 분석

Posted by ironmask84
2017. 7. 12. 12:08 컴퓨터공학/IT 트렌드


(출처 : 소프트웨어 센터 웹진 자료)


머신러닝을 알린 알파고의 알고리즘 분석 



인공지능에 대한 관심은 이전에도 있었지만 최근처럼 뜨거운 열풍을 일으킨 것은 역시 알파고(AlphaGo)다. 알파고는 우리나라 이세돌 9단과 바둑 대결을 한 구글 딥마인드(DeepMind)에서 개발된 인공지능이다. 대결 전에는 이세돌 9단의 우세를 점치는 전문가들이 많았지만 실제 경기에서는 알파고의 승리로 끝났다. 그렇다면, 어떻게 컴퓨터가 사람처럼 바둑을 두는 것인지 자연스러운 의문을 가지게 된다. 이번 회에서는 알파고가 바둑을 두는 알고리즘에 대해 단국대학교 소프트웨어공학연구센터의 김규억 박사를 만나 자세한 사항을 들어본다. 





Q: 본격적인 이야기 전에 머신러닝에 대해 설명을 부탁 드립니다. 

머신러닝(Machine Learning)은 컴퓨터에 답이 정해진 샘플 데이터를 넣으면서 반복적으로 학습을 시킨 후, 새로운 문제가 나타나면 스스로 답을 찾을 수 있도록 하는 것입니다. 말 그대로 컴퓨터한테 공부를 가르쳐서 지식을 얻게 하는 것이지요. 학습 자료를 계속 입력하고, 거기서 일정한 패턴을 찾아낸 후 문제가 입력되면 정답을 제시할 수 있는 모델이 만들어집니다(그림1).  



<그림1> 머신러닝의 학습을 통한 예측 모델 생성 



 이렇게 만들어진 모델로 새로운 문제가 제시되면 정답을 찾아낼 수 있는 것이죠. 사람이 수학 문제를 많이 풀면, 비슷한 유형의 문제가 나오면 풀 수 있는 것처럼 컴퓨터도 학습을 하면 별다른 로직 없이 정답을 알려주는 것입니다. 



<그림2> 머신러닝으로 만들어진 모델로 정답 예측 




Q: 컴퓨터가 스스로 생각한다는 것은 잘 알겠는데 어떤 원리인지는 잘 모르겠습니다. 이 부분을 설명 부탁 드립니다. 

우리가 코딩을 할 때, 가장 많이 사용하는 예약어 중의 하나가 바로 “IF THEN”문입니다. 무슨 얘기냐 하면, 선택이 필요한 경우 어떤 것을 선택했는지에 따라 다양한 로직으로 분기를 하게 됩니다. 예를 들어, 고양이 사진을 보여주고 이 것이 고양이 사진인지 컴퓨터가 판단을 한다면 이전에는 주로 “IF THEN”문으로 했는데 아시는 것처럼 “IF THEN”문은 비교해야 하는 대상을 주어야 분기가 가능하다는 것입니다. 그런데, 고양이 형태가 한둘이 아니기 때문에 이를 모두 “IF THEN”문으로 만들기는 거의 불가능하지요. 

기계학습의 경우는 고양이 사진을 컴퓨터한테 보여주면서 “이것은 고양이 사진이야”라고 알려주게 되는데, 다양한 고양이 사진을 수없이 보여주면 어떠한 패턴이 생겨납니다. 패턴이 만들어지면, 새로운 고양이 사진을 패턴에 대입하고 이것이 고양이 사진인지 아닌지를 판단하는 것이지요. 이러한 것은 다양한 알고리즘에 의해 만들어지는데 자세한 사항은 아래 사이트를 참고하시면 될 것 같습니다. 그림3은 기계학습의 한 종류인 딥러닝을 보여주고 있습니다. 

 


<그림3> 고양이 사진을 판단하는 기계학습의 예 

 


출처: 사이언스 모션 



 <참고사이트>



Q: 사람하고 똑 같은 학습을 한다는 말씀이시지요? 그래서, 알파고가 바둑을 둘 수 있었던 것 같네요. 기계학습을 하기 위해 필요한 것들이 있을 것 같은데 어떤 것이 있을까요? 

기계학습에는 지도 학습, 비지도 학습, 그리고 강화 학습과 같이 크게 3종류로 구분할 수 있습니다. 지도 학습은 앞에서 말한 것처럼 정답을 알려줘서 학습을 하는 것이고, 비지도 학습은 정답은 없고 데이터 요소에 따라 군집화나 밀도를 추론해서 결과값을 예측하게 됩니다. 마지막으로, 강화 학습은 현재 상태에서 최적의 행동은 무엇인지를 학습하는 것입니다. 어떤 행동이냐에 따라 보상이 주어지는데 이 보상이 최대화 되도록 학습을 반복하게 됩니다. 강화 학습의 대표적인 예가 게임 트리 탐색 알고리즘입니다. 알파고를 설명하기 위해 필요한 것이죠. 게임 트리 탐색은 바둑이나 체스처럼 두 명의 플레이어가 번갈아 취하는 행동을 트리 형태로 표현하는 것입니다(그림4).  



<그림4> 게임 트리 탐색 알고리즘의 예 



 출처: LG CNS 



그림4에서 보는 것처럼 체스를 한번씩 둘 때마다 오른쪽과 같이 트리의 노드가 하나씩 늘어나는 것입니다. 이러한 방법은 모든 경우의 수를 탐색할 수 있는데, 어떤 순서로 각 노드에 방문하냐에 따라 탐색 시간이 엄청나게 차이가 날 수 있습니다. 일반적으로 게임 트리 알고리즘에서 많이 사용되는 것이 최소-최대 알고리즘인데, 알파고는 최소-최대 알고리즘을 개선한 몬테카를로 트리 탐색(MCTS; Monte Carlo Tree Search) 알고리즘을 사용한 것입니다. 



Q: 몬테카를로 트리 탐색을 특별히 선택한 이유가 있을 것 같은데요. 

바둑은 다양한 경우의 수를 미리 예측해서 두게 됩니다. 다시 말해, 얼마나 다양한 경우의 수를 미리 예측할 수 있냐에 따라 승패가 갈릴 수는 없겠지만 바둑기사가 최적의 위치에 돌을 두게 할 수 있는 정보이기 때문에 많으면 많을수록 좋을 것입니다. 그런데, 한정된 시간에 항상 모든 경우의 수를 찾을 수는 없을 겁니다. 몬테카를로 트리 탐색 알고리즘은 현재 상태에서 한 단계 예측을 하고, 이 예측에 따른 시뮬레이션 결과에 따라 다음 단계를 예측하는 것입니다. 이 과정을 일정 횟수 반복하게 되는데, 모든 경로를 탐색할 필요가 없다는 장점이 있어 시간이 한정되어 있다면 매우 효율적인 방법입니다(그림5). 

 


<그림5> 몬테카를로 트리 탐색 알고리즘의 구동 방식 


 


출처: http://mcts.ai  



정리를 해보면, 바둑과 같이 턴 형태의 게임은 게임 트리 탐색 알고리즘을 사용하게 되는데 모든 경우의 수를 확인할 수 없으니 몬테카를로 트리 탐색 알고리즘으로 탐색 횟수를 줄이는 것이라고 생각하면 됩니다. 



Q: 학교 다닐 때 배웠던 기억이 날 정도로 보통의 이론으로 들리는데, 정말 이 것으로 알파고가 이세돌 9단을 이긴 것입니까? 

그 질문이 나올 줄 알았습니다. 많은 분들이 기계학습, 딥러닝과 같은 얘기를 들으면 마치 새로운 기술로 생각하시는데, 이 이론은 이미 오래 전부터 뉴럴 네트워크(Neural Network) 등으로 알려져 있던 이론입니다. 마치, 사람의 뇌와 같이 컴퓨터가 생각하도록 하자는 것이었죠.



Q: 그럼, 그렇게 오래된 이론이 왜 이제서야 주목을 받게 된 것인가요? 

기계학습의 핵심은 학습입니다. 얼마나 많은 학습을 시키냐에 따라 컴퓨터의 똑똑함이 결정되는 것이죠. 이 때, 가장 중요한 요소가 학습 데이터와 컴퓨터의 처리 속도입니다. 그림6을 보시면, 왼쪽 그림처럼 15개의 학습 데이터로 일정 패턴이 나타난 것을 맞는 것이다라고 할 수 있겠지만 신뢰도는 다소 떨어지겠지요. 오른쪽 그림을 보시면, 100개의 학습 데이터로 패턴이 만들어졌습니다. 15개일 때보다 신뢰도가 많이 올라갈 겁니다. 

 


<그림6> 학습 데이터 수에 따른 비교 

 


출처: Pattern Recognition and Machine Learning 



15개일 때와 100개일 때 만들어진 두 개의 패턴이 있다고 가정할 때, 새로운 데이터를 예측해야 한다면 100개로 만들어진 패턴이 더 정확하게 나타날 것입니다. 학습 데이터가 천개, 만개로 늘어난다면 정확도는 더 올라갈 수 있겠지요. 과거에는 학습 데이터를 만들기가 너무 어려웠습니다. 지금도 어렵기는 마찬가지이지만 IoT나 빅데이터와 같은 것을 통해 많은 학습 데이터를 확보할 수 있게 되었지요. 

또 하나의 요소인 학습 속도에 대해 알아보죠. 학습 속도는 말 그대로 컴퓨터의 처리 속도에 비례합니다. 학습 데이터를 많이 학습을 하기 위해서는 오랜 시간이 필요한데 처리 속도가 빠르다면 짧은 시간에도 많은 학습을 할 수 있는 것이지요. 최근에는 기술 발달로 인해 컴퓨터의 처리속도가 많이 빨라져 기계학습의 발전을 도와주고 있습니다. 






Q: 그럼 다시 알파고 얘기로 돌아가 보겠습니다. 알파고 승리의 원동력은 무엇입니까? 

알파고는 1202개의 CPU와 176개의 GPU가 사용되었다고 합니다. 어마어마한 수치이죠. 아마도 구글이 아니면 해내기 어려울 정도의 하드웨어가 사용되면서 처리 속도를 높였죠. 이러한 처리 속도는 학습 속도와 이세돌 9단과 바둑을 두는 속도에도 엄청난 영향을 주게 됩니다.

자 그럼, 이제 알파고의 트레이닝 과정을 살펴보겠습니다. 단순합니다. 알파고 한테 바둑 기사들이 두었던 이전의 기보를 계속 학습시키는 것입니다(그림7). 알파고는 학습한 기보의 내용을 모두 기억하는 것이 아니라 패턴으로 기억하는 것이라고 생각하는 것이 이해하기가 쉽습니다. 

 


<그림7> 알파고가 학습한 경우의 수 


 


출처: Google  



이렇게 기억한 것을 기초로, 실제 바둑 기사와 바둑을 두게 됩니다. 바둑 기사가 착수하는 점을 입력 받아 많은 패턴 중에서 최적의 대응을 하게 되는 것이지요. 기억하실 것은 알파고니까 가능한 겁니다. 



Q: 알파고 말고는 불가능 하다는 말씀인가요? 

무슨 얘기냐 하면, 아까 얘기한 것처럼 1202개의 CPU와 176개의 GPU이기 때문에 이세돌 9단과 대적을 했다는 것입니다. 이 정도의 하드웨어가 아니었다면 한정된 시간에서 많은 오류를 범했을 겁니다. 고성능의 처리 속도로 많은 경우의 수를 예측했기 때문에 이길 수 있었다는 얘기지요. 그만큼, 기계학습의 가장 중요한 성공 포인트는 많은 학습 데이터와 빠른 처리 속도입니다. 물론, 이 외에도 예측을 위해서 더 세밀한 부분들이 있지만 이번 시간에는 기본적인 부분만 다뤄야 할 것 같습니다. 



Q: 왜 구글이나 IBM이 인공지능의 선두 주자인지 알 것 같습니다. 알파고가 이세돌 9단을 이기고 세계랭킹 4위에 올랐습니다. 향후 알파고의 랭킹을 예측해 보신다면요? 

재미있는 질문입니다. 제가 확실하게 얘기하고 싶은 것은 알파고는 시간이 갈수록 기하급수적으로 더 강해진다는 것입니다. 왜냐하면, 계속 기존의 바둑 기보를 학습할 것이기 때문입니다. 


 

<그림8> 알파고의 세계랭킹 


 



출처: 인사이트  



알파고가 이세돌 9단과의 대전을 준비할 때는 이세돌 9단의 이전 공식 기보는 통째로 학습 했을 것이고, 세계적인 기사들의 기보도 학습했을 겁니다. 새로운 도전자가 나타난다면, 순식간에 도전자의 바둑 방식을 파악해서 패턴화할 것입니다. 이세돌 9단과의 대전에서 나타난 수준을 생각하면서 도전했다가는 아마 큰 낭패를 볼 수 있을 겁니다. 



Q: 스타크레프트와 같은 진짜 게임에 도전하겠다는 의사도 밝혔는데 어떤 결과가 올지 기대가 됩니다. 오늘 말씀을 정리해 주시죠. 

IoT가 발전하면서 빅데이터의 활용도와 중요성이 점점 커지고 있고, 빅데이터로 인해 기계학습의 활용도도 더 확대될 것으로 예상됩니다. 많은 산업들이 사람들에 의해 의사결정이나 관리가 이루어졌던 것이 현실이었습니다. 하지만, 기계학습을 활용한다면 사람보다 더 세밀하고 정확한 예측과 대응책을 제시해 줄 것으로 기대됩니다. 앞으로 많은 분야에서 기계학습에 대한 관심이 필요한 시점인 것 같습니다.  

출처 : 
http://www.sw-eng.kr/member/customer/Webzine/BoardView.do?boardId=00000000000000045466&currPage=1&searchPrefaceId=&titOrder=&writeOrder=&regDtOrder=&searchCondition=TOT&searchKeyword=%EB%A8%B8%EC%8B%A0%EB%9F%AC%EB%8B%9D



 

인공 지능과 머신 러닝, 딥 러닝의 차이점

Posted by ironmask84
2017. 7. 12. 12:04 컴퓨터공학/IT 트렌드



5년 전 부터 빅데이터 라는 용어가 유행처럼 등장해서는 


알파고 등장 이후 머신러닝, 딥러닝 이라는 용어가 핫 이슈가 되었습니다.


그 동안 어렴풋하게 빅데이터란 머신러닝이란 이런 것이지 하고 생각하고 있다가 


이제서야 관심을 좀 더 가지고 여기저기 관련 정보를 습득하는 도중 포스팅 합니다. ^^


우선 머신러닝은 인공지능의 한 분야 이며, 딥러닝은 머신러닝의 한 부분 입니다.


즉, 인공지능 > 머신러닝 > 딥러닝  이런 관계죠.


인공지능은 컴퓨터가 지능적으로 스스로 무언가를 처리하는 것인데,
머신러닝은 그 과정을 학습하면서 더 개선되고 업그레이드 되어가면서 무언가를 처리하는 것이라고 볼 수 있습니다.


빅데이터는 말 그대로 대량의 데이터를 분석하고 처리하는 기술입니다.

인공지능은 이 빅데이터 기술을 이용하기 참 좋다는 생각이 드네요.


아래에 인공 지능과 머신 러닝, 딥 러닝의 차이점에 대한 글을 소개드립니다. ^^



출처 : http://blogs.nvidia.co.kr/2016/08/03/difference_ai_learning_machinelearning/ (NVDIA)



세기의 바둑대전에서 구글 딥마인드의 인공지능 ‘알파고(AlphaGo)’ 프로그램이 한국의 이세돌 9단을 꺾었을 때, 알파고의 승리 배경을 논할 때 인공 지능과 머신 러닝, 딥 러닝의 정확한 개념에 대해 혼란을 느끼시는 분들이 많으셨을텐데요^^

오늘은 이러한 세가지 개념에 대해서 명쾌하게 설명해 드리겠습니다. 이러한 세 가지 개념의 관계를 가장 쉽게 파악하는 방법은 세 개의 동심원을 상상하는 것입니다. 인공 지능이 가장 큰 원이고, 그 다음이 머신 러닝이며, 현재의 인공지능 붐을 주도하는 딥 러닝이 가장 작은 원이라 할 수 있죠.


인공지능 기술의 탄생 및 성장

인공 지능이라는 개념은 1956년 미국 다트머스 대학에 있던 존 매카시 교수가 개최한 다트머스 회의에서 처음 등장했으며, 최근 몇 년 사이 폭발적으로 성장하고 있는 중이랍니다. 특히 2015년 이후 신속하고 강력한 병렬 처리 성능을 제공하는 GPU의 도입으로 더욱 가속화되고 있죠. 갈수록 폭발적으로 늘어나고 있는 저장 용량과 이미지, 텍스트, 매핑 데이터 등 모든 영역의 데이터가 범람하게 된 ‘빅데이터’ 시대의 도래도 이러한 성장세에 큰 영향을 미쳤습니다.

인공 지능: 인간의 지능을 기계로 구현하다


1956년 당시 인공 지능의 선구자들이 꿈꾼 것은 최종적으로 인간의 지능과 유사한 특성을 가진 복잡한 컴퓨터를 제작하는 것이었죠. 이렇듯 인간의 감각, 사고력을 지닌 채 인간처럼 생각하는 인공 지능을 ‘일반 AI(General AI)’라고 하지만, 현재의 기술 발전 수준에서 만들 수 있는 인공지능은 ‘좁은 AI(Narrow AI)’의 개념에 포함됩니다. 좁은 AI는 소셜 미디어의 이미지 분류 서비스나 얼굴 인식 기능 등과 같이 특정 작업을 인간 이상의 능력으로 해낼 수 있는 것이 특징이죠.

머신 러닝: 인공 지능을 구현하는 구체적 접근 방식


머신 러닝은 메일함의 스팸을 자동으로 걸러주는 역할을 합니다.

한편, 머신 러닝은 기본적으로 알고리즘을 이용해 데이터를 분석하고, 분석을 통해 학습하며, 학습한 내용을 기반으로 판단이나 예측을 합니다. 따라서 궁극적으로는 의사 결정 기준에 대한 구체적인 지침을 소프트웨어에 직접 코딩해 넣는 것이 아닌, 대량의 데이터와 알고리즘을 통해 컴퓨터 그 자체를 ‘학습’시켜 작업 수행 방법을 익히는 것을 목표로 한답니다.

머신 러닝은 초기 인공 지능 연구자들이 직접 제창한 개념에서 나온 것이며, 알고리즘 방식에는 의사 결정 트리 학습, 귀납 논리 프로그래밍, 클러스터링, 강화 학습, 베이지안(Bayesian) 네트워크 등이 포함됩니다. 그러나 이 중 어느 것도 최종 목표라 할 수 있는 일반 AI를 달성하진 못했으며, 초기의 머신 러닝 접근 방식으로는 좁은 AI조차 완성하기 어려운 경우도 많았던 것이 사실이죠.

현재 머신 러닝은 컴퓨터 비전 등의 분야에서 큰 성과를 이뤄내고 있으나, 구체적인 지침이 아니더라도 인공 지능을 구현하는 과정 전반에 일정량의 코딩 작업이 수반된다는 한계점에 봉착하기도 했는데요. 가령 머신 러닝 시스템을 기반으로 정지 표지판의 이미지를 인식할 경우, 개발자는 물체의 시작과 끝 부분을 프로그램으로 식별하는 경계 감지 필터, 물체의 면을 확인하는 형상 감지, ‘S-T-O-P’와 같은 문자를 인식하는 분류기 등을 직접 코딩으로 제작해야 합니다. 이처럼 머신 러닝은 ‘코딩’된 분류기로부터 이미지를 인식하고, 알고리즘을 통해 정지 표지판을 ‘학습’하는 방식으로 작동된답니다.

머신 러닝의 이미지 인식률은 상용화하기에 충분한 성능을 구현하지만, 안개가 끼거나 나무에 가려서 표지판이 잘 보이지 않는 특정 상황에서는 이미지 인식률이 떨어지기도 한답니다. 최근까지 컴퓨터 비전과 이미지 인식이 인간의 수준으로 올라오지 못한 이유는 이 같은 인식률 문제와 잦은 오류 때문이죠.

딥 러닝: 완전한 머신 러닝을 실현하는 기술


초기 머신 러닝 연구자들이 만들어 낸 또 다른 알고리즘인 인공 신경망(artificial neural network)에 영감을 준 것은 인간의 뇌가 지닌 생물학적 특성, 특히 뉴런의 연결 구조였습니다. 그러나 물리적으로 근접한 어떤 뉴런이든 상호 연결이 가능한 뇌와는 달리, 인공 신경망은 레이어 연결 및 데이터 전파 방향이 일정합니다.

예를 들어, 이미지를 수많은 타일로 잘라 신경망의 첫 번째 레이어에 입력하면, 그 뉴런들은 데이터를 다음 레이어로 전달하는 과정을 마지막 레이어에서 최종 출력이 생성될 때까지 반복합니다. 그리고 각 뉴런에는 수행하는 작업을 기준으로 입력의 정확도를 나타내는 가중치가 할당되며, 그 후 가중치를 모두 합산해 최종 출력이 결정됩니다.

정지 표지판의 경우, 팔각형 모양, 붉은 색상, 표시 문자, 크기, 움직임 여부 등 그 이미지의 특성이 잘게 잘려 뉴런에서 ‘검사’되며, 신경망의 임무는 이것이 정지 표지판인지 여부를 식별하는 것입니다. 여기서는 충분한 데이터를 바탕으로 가중치에 따라 결과를 예측하는 ‘확률 벡터(probability vector)’가 활용되죠.

딥 러닝은 인공신경망에서 발전한 형태의 인공 지능으로, 뇌의 뉴런과 유사한 정보 입출력 계층을 활용해 데이터를 학습합니다. 그러나 기본적인 신경망조차 굉장한 양의 연산을 필요로 하는 탓에 딥 러닝의 상용화는 초기부터 난관에 부딪혔죠. 그럼에도 토론토대의 제프리 힌튼(Geoffrey Hinton) 교수 연구팀과 같은 일부 기관에서는 연구를 지속했고, 슈퍼컴퓨터를 기반으로 딥 러닝 개념을 증명하는 알고리즘을 병렬화하는데 성공했습니다. 그리고 병렬 연산에 최적화된 GPU의 등장은 신경망의 연산 속도를 획기적으로 가속하며 진정한 딥 러닝 기반 인공 지능의 등장을 불러왔죠.

신경망 네트워크는 ‘학습’ 과정에서 수많은 오답을 낼 가능성이 큽니다. 정지 표지판의 예로 돌아가서, 기상 상태, 밤낮의 변화에 관계 없이 항상 정답을 낼 수 있을 정도로 정밀하게 뉴런 입력의 가중치를 조정하려면 수백, 수천, 어쩌면 수백만 개의 이미지를 학습해야 할지도 모르죠. 이 정도 수준의 정확도에 이르러서야 신경망이 정지 표지판을 제대로 학습했다고 볼 수 있습니다.

2012년, 구글과 스탠퍼드대 앤드류 응(Andrew NG) 교수는 1만6,000개의 컴퓨터로 약 10억 개 이상의 신경망으로 이뤄진 ‘심층신경망(Deep Neural Network)’을 구현했습니다. 이를 통해 유튜브에서 이미지 1,000만 개를 뽑아 분석한 뒤, 컴퓨터가 사람과 고양이 사진을 분류하도록 하는데 성공했습니다. 컴퓨터가 영상에 나온 고양이의 형태와 생김새를 인식하고 판단하는 과정을 스스로 학습하게 한 것이죠.

딥 러닝으로 훈련된 시스템의 이미지 인식 능력은 이미 인간을 앞서고 있습니다. 이 밖에도 딥 러닝의 영역에는 혈액의 암세포, MRI 스캔에서의 종양 식별 능력 등이 포함됩니다. 구글의 알파고는 바둑의 기초를 배우고, 자신과 같은 AI를 상대로 반복적으로 대국을 벌이는 과정에서 그 신경망을 더욱 강화해 나갔습니다.

딥 러닝으로 밝은 미래를 꿈꾸는 인공 지능

딥 러닝의 등장으로 인해 머신 러닝의 실용성은 강화됐고, 인공 지능의 영역은 확장됐죠. 딥 러닝은 컴퓨터 시스템을 통해 지원 가능한 모든 방식으로 작업을 세분화합니다. 운전자 없는 자동차, 더 나은 예방 의학, 더 정확한 영화 추천 등 딥 러닝 기반의 기술들은 우리 일상에서 이미 사용되고 있거나, 실용화를 앞두고 있습니다. 딥 러닝은 공상과학에서 등장했던 일반 AI를 실현할 수 있는 잠재력을 지닌 인공 지능의 현재이자, 미래로 평가 받고 있답니다.


 

IoT 사례 연구 - 빅데이터와 연계

Posted by ironmask84
2017. 7. 11. 16:23 컴퓨터공학/IT 트렌드


(출처 : 소프트웨어 센터 웹진 자료)

IoT 사례 연구 - 빅데이터와 연계 



IoT(Internet of Things)의 시대에는 빅데이터를 빼놓고 말할 수 없을 만큼 중요한 요소이다. 엄청난 양(Volume)의 다양한(Variety) 데이터가 엄청난 속도(Velocity)로 쏟아지기 때문이다. 반대로, 빅데이터는 대량의 데이터가 입력되지 않으면 가치를 찾기 어렵기 때문에 빅데이터와 IoT는 뗄 수 없는 관계일 수 밖에 없다. 이번 회에서는 IoT와 빅데이터를 활용하기 위해 사용되는 구성에 대해 알아보기로 한다. 상호 보완적 개념인 빅데이터와 IoT를 연결한 컴퓨팅 구성을 이해하는데 도움이 되기를 기대한다. 



사례 연구 전 확인 사항 


IoT와 빅데이터 


IoT는 사물이 다양한 센서를 통해 수집한 데이터를 네트워크를 통해 전달하는 것이 일반적인 역할이라고 할 수 있다(그림1). IoT에서 수집하는 데이터는 실시간 데이터가 대부분이기 때문에 사물이 24시간 동안 인터넷에 접속되어 있으면서 쉬지 않고 데이터를 수집한다. 이러한 일을 위해 과거에는 많은 비용과 기술이 필요했지만 현재는 디바이스가 점점 소형화 되면서 비용도 함께 내려가는 추세다. 따라서, 지금은 거의 모든 산업에서 IoT를 이용해 빅데이터를 수집하고 있다. 



 <그림1> IoT의 데이터 수집과 전달 


 출처: http://www.tkt.cs.tut.fi/research/waps/ 



IoT와 빅데이터, 그리고 클라우드 


IoT, 클라우드(Cloud), 빅데이터를 ‘제3의 IT혁명’이라고 불리고 있다. IoT 센서를 통해 빅데이터를 수집하고, 수집된 빅데이터를 정제하고 분석, 이를 다시 서비스하기까지 클라우드 환경이 구축되어 있어야 가능하기 때문이다. 실제 세상의 정보를 센서를 통해 수집하고, 이를 디지털화하여 정제, 분석한 후 디지털 세상에 저장하고, 분석된 결과를 실제 세상에 다시 제공한다. 실제 세상과 디지털 세상을 이어주는 역할을 클라우드가 하게 된다(그림2). 


 

<그림2> IoT, Cloud, Big data의 연결 

 


출처: SK Telecom - The ERA of Smart things 



지금까지도 수집된 데이터는 대부분 실시간으로 저장하는 경우가 많았다. 하지만, IoT가 쏟아내는 빅데이터의 양은 시간이 갈수록 기하급수적으로 늘어나기 때문에 데이터센터를 구축해도 감당하기 힘든 경우도 발생할 수 있다. 따라서, 센서에서 수집되는 데이터를 효율적으로 수집하고 분석하는 것도 중요하지만 효율적인 데이터 전송, 저장 방법도 중요한 요소로 남아있는 상태다(그림3). 



<그림3> IoT, Cloud, Big data의 연결의 예 

 


출처: Cisco blog - IoT Platform Architecture 



IoT를 통한 실시간 빅데이터 분석의 필요성 증대 


IoT에서 수집하는 빅데이터의 증가로 인해 수집된 빅데이터를 분석하기 위해 저장할 수 있는 시간과 공간이 점차 줄어들고 있다. 이로 인해, 필요성이 증가하고 있는 것이 실시간 빅데이터 분석이다. 일반적인 데이터 분석은 데이터의 생성 시점과 분석 시점을 크게 고민할 필요가 없지만, 실시간 분석은 데이터가 생성되는 시점에 분석을 해야 하기 때문에 다양한 방법들이 연구되고 있다. 센서나 소셜 미디어에서 생성되는 시계열 데이터나 로그 데이터가 주 대상이며, 머신 데이터는 빅데이터 중에서도 증가세가 가장 빠른 영역이다. IoT 활용에서 실시간 빅데이터 분석의 중요성이 강조되는 이유는 IoT에서 수집하는 데이터가 워낙 방대하기 때문에 계속 쌓아놓고 데이터를 볼 경우 원하는 IoT 활용이 어렵기 때문이다. 그림4와 같은 방법으로 IoT를 활용한 실시간 데이터 분석이 가능하다. 

 


<그림4> 실시간 데이터 분석 방법 

 


출처: http://www.openwith.net/?page_id=976 


 

<참고사이트> 

 - 실시간 빅데이터 분석 원리 http://d2.naver.com/helloworld/694050



사례 연구 


시스코(Cisco) - 포그 컴퓨팅(Fog Computing) 


IoT의 확산과 빅데이터의 양과 실시간 처리의 필요성이 증가하고 센서 디바이스의 한계로 인해 클라우드 컴퓨팅의 영역보다 더 확대된 역할이 필요하게 되었다. 클라우드 컴퓨팅을 실제 네트워크에 보다 근접한 경계 영역까지 확장하는 새로운 아키텍처가 제시되었는데 이 것이 포그 컴퓨팅이다(그림5). 

 


<그림5> 포그 컴퓨팅의 구성 

 


출처: Cisco 



포그 컴퓨팅은 센서나 디바이스에서 생성된 데이터를 실시간으로 처리할 수 있는 노드를 기지국처럼 두고 컴퓨팅 파워가 필요한 데이터만 클라우드로 넘겨서 처리하는 방식이다. 노드에는 컴퓨팅에 필요한 메모리나 저장 기능을 가지고 있어 즉각적인 데이터 분석이 가능하도록 되어 있다. 스마트폰과 같은 디바이스에서 생성된 데이터를 근거리 통신망을 이용해 포그 노드에 연결하여 분석하고, 그 이상의 컴퓨팅 파워가 필요한 작업은 클라우드로 보내 처리하게 한다. 이러한 방식은 간단한 데이터 분석은 포그 노드에서 해결하기 때문에 데이터 분석에 필요한 비용과 시간을 절약할 수 있고, 대부분 데이터 분석이 완료된 데이터가 네트워크를 통해 저장되기 때문에 빅데이터 저장공간도 줄일 수 있는 장점이 있다. 아키텍처를 보면 컴퓨터, 네트워크, 저장장치가 있고, 사용자 위치 파악해 주는 엔진과 그 위에서 애플리케이션이 구동된다. 이러한 아키텍처가 라우터나 셋톱박스, AP 등에 탑재될 수 있다. 즉, 전통적인 컴퓨팅 모델과 비교하면, 물리적인 디바이스와 인터넷 사이에 분산 플랫폼을 가지고 있는 것이다.(그림6). 

 


<그림6> 전통적 컴퓨팅 모델과 포그 컴퓨팅 모델의 비교 

 


출처: Cisco 



파스트림(ParStream) 


고성능 압축 비트맵 인덱스(HPCI; High Performance Compressed Index) 기술을 특허 등록하여 사용하는 파스트림은 수십억 건의 데이터도 1초 이내 분석 결과를 도출할 수 있다고 알려져 있다. IoT를 통한 빅데이터 분석에 강점이 있는 이유가 여기에 있다. 파스트림의 가장 큰 특징은 하둡 기반이 아닌 관계형 데이터베이스 기술을 적용한다는 점이다. 이 것은 사용자가 기존에 사용하던 SQL과 관련 기술을 그대로 사용할 수 있다는 장점이 있다. HPCI 기술은 압축 해제 없이 바로 쿼리가 가능하도록 한 것(그림7)으로 압축 해제에 필요한 CPU나 메모리의 성능 저하나 처리 시간이 필요 없다는 장점을 가지고 있다. 

 


<그림7> HPCI 개념 

 


출처: 파스트림 



데이터스트림즈의 TeraStream Bass 


데이터스트림즈에서는 IoT를 통한 빅데이터 실시간 분석을 위한 메모리 기반 플랫폼을 제시하고 있다(그림8). 전력장비, 보안장비, 로그데이터 등을 실시간으로 수집하여 실시간 인덱싱 후 데이터를 메모리에 분산 저장하는 방식이다. 오래된 데이터나 사용자 설정을 벗어나는 데이터는 Hadoop의 HDFS에 분산 저장 처리하여 실시간 처리 요건과 Batch처리 요건을 동시에 만족할 수 있는 Hybrid 분석 기능을 제공하는 것이 특징이다. 수집된 데이터를 메모리와 디스크에 분산 저장하기 때문에 사용 빈도가 높은 것은 메모리에 위치할 수 있어 분석과 검색 속도가 빠르다는 장점이 있다. 메타데이터를 활용해 메모리와 하둡에 저장하는 데이터를 구분하는 것도 좀더 체계적인 기준으로 데이터를 분산 배치할 수 있다. 

 


<그림8> 데이터스트림즈의 IoT를 통한 실시간 데이터 처리 

 


출처: 데이터스트림즈 



기대 효과와 결론 


IoT와 빅데이터 간의 연계는 소프트웨어적인 요소보다는 아키텍처적 요소가 많이 반영되어 있지만 센서나 디바이스의 네트워크 연계, 빅데이터의 분석, 저장 등을 위한 입력 데이터의 연계 방법에 대해 알고 있어야 효율적으로 전체 아키텍처를 구성할 수 있다. IoT를 통한 빅데이터 활용의 최근 트렌드는 실시간 분석이기 때문에 IoT의 센서나 디바이스의 데이터 수집 부담과 데이터를 분석하고 저장하는 부담을 줄이기 위한 노력이 계속되고 있다.

출처 : 
http://www.sw-eng.kr/member/customer/Webzine/BoardView.do?boardId=00000000000000045319&currPage=1&searchPrefaceId=&titOrder=&writeOrder=&regDtOrder=&searchCondition=TOT&searchKeyword=IoT+%EC%82%AC%EB%A1%80+%EC%97%B0%EA%B5%AC 



 

IoT 사례 연구 - 개발 기법

Posted by ironmask84
2017. 7. 11. 16:04 컴퓨터공학/IT 트렌드


(출처 : 소프트웨어 센터 웹진 자료)

IoT 사례 연구 - 개발 기법 



IoT(Internet of Things) 소프트웨어는 기존 ICT(Information & Communication Technology) 소프트웨어와는 다소 상이한 부분이 있다. IoT 기반 소프트웨어의 경우 IoT 디바이스를 중심으로 개발되어야 하기 때문에 소프트웨어 개발부터 운영까지 확인해야 할 사항들이 존재한다. 이번 회에서는 IoT을 위한 소프트웨어의 구성과 개발에 관해 알아보기로 한다. IoT 기술 적용을 위한 소프트웨어의 요소를 이해하는데 도움이 되기를 기대한다. 



사례 연구 전 확인 사항 



IoT는 사물을 이용한 방식이기 때문에 디바이스와 네트워크에 대한 제어를 소프트웨어에 포함시켜야 하는 경우가 많다. 기존에는 각 산업이나 서비스에서 필요한 정보만을 수집하다 보니 소프트웨어의 규모도 그리 크지 않았지만, 최근에는 엄청난 양의 정보가 수집되어 소프트웨어의 규모도 커지고 그에 필요한 아키텍처도 다양해지는 추세다. 이렇게, 정보를 한 곳으로 모았다가 다시 필요한 곳으로 정보를 제공하는 중앙 집중 식 클라우드 형태가 현재 많이 사용되는 모델이고, 이후 분산 클라우드 형태의 IoT가 많이 연구되어 발표되고 있는 추세다. 


<참고사이트>



이처럼, IoT의 모델이 다양하게 존재하지만, 소프트웨어 입장에서 근본적인 IoT의 모델은 다양한 사물에서 데이터를 수집하는 형태다(그림1). 기존에는 단독 사물에서 데이터를 수집하는 형태였지만, 여러 사물에서 중앙집중식으로 변화가 일어나면서 소프트웨어는 더 많은 디바이스와 연결하고 더 많은 데이터를 가져오는 것으로 변화됐다. 

 


<그림1> IoT 모델의 변화 


 



출처: 전자부품연구원  



그림1에서 보는 것처럼, 소프트웨어 관점에서는 표준화된 플랫폼을 구축하여 다양한 디바이스와 네트워크의 제어가 가능하게 된다. 아래는 이렇게 표준화된 플랫폼 기반에서 다양한 IoT 서비스 위한 소프트웨어 개발에 필요한 능력이다. 



IoT 디바이스를 제어하기 위한 시스템 소프트웨어 개발 능력 


IoT를 위한 디바이스들은 모바일폰과 같은 스마트 디바이스와는 다르게 센서와 같은 하드웨어 측면의 부가적인 기능을 가진 디바이스가 많다. 이러한 기능을 원활히 동작하게 하고 다양한 하드웨어를 추가하기 위해서는 유연성과 확장성이 필요하다. 이를 위해, 펌웨어보다는 임베디드 적용이 필요하고 임베디드 기반의 소프트웨어 개발 능력이 요구된다. 여기서, 기존의 임베디드는 하드웨어 중심의 기능은 단순하고 독립적으로 구성되었지만 IoT가 적용되면서 최근에는 소프트웨어를 중심으로 구성되어 많은 기능을 제어할 수 있고 확장이 용이하게 변화되었다(그림2). 하드웨어의 비중이 줄어들고 유연한 확장이 용이한 소프트웨어 중심의 임베디드 시스템 설계가 이루어지고 있기 때문이다.


 

<그림2> IoT 모델 변화에 따른 임베디드 시스템의 변화 

 


출처: RENESAS 



IoT 네트워크와 인터페이스를 위한 소프트웨어 개발 능력 


IoT의 발전과 함께 빠질 수 없는 요소가 IoT 게이트웨이(Gateway)다. IoT 게이트웨이는 각 디바이스에서 수집되는 데이터를 모아 전송하기 때문에 IoT 게이트웨이가 있으면 디바이스가 꼭 인터넷에 접근할 필요가 없어 네트워크 대역폭의 부담을 낮출 수 있다. 또한, 불필요한 데이터는 거르고 필요한 데이터만 전송하도록 한다면 데이터의 신뢰도를 높이고 네트워크의 트래픽을 낮출 수 있다. 또, 통신 네트워크와 인터페이스의 유연한 확장을 위해서도 소프트웨어를 통한 제어가 필요하다. 

 


<그림3> IoT 게이트웨이를 적용한 IoT 구성 

 



출처: Intel 



IoT에서 수집된 빅데이터를 지식화 하기 위한 소프트웨어 개발 능력


IoT는 엄밀히 IoT 자체적인 서비스는 거의 없다. 대부분 IoT에서 수집된 정보를 활용하는 서비스이다. IoT 소프트웨어에 빅데이터 관련 개발 능력이 필요한 이유다. 사물에서 데이터를 수집하고 네트워크를 통해 전달한 후 빅데이터 활용 프로세스에 맞춰 서비스를 제공한다(그림4). 


 

<그림4> IoT를 통한 빅데이터 수집 및 활용 

 

출처: 공개소프트웨어포털  



<참고링크>



IoT 플랫폼은 위 세 가지를 적용하여 구성할 수 있다(그림5). 특정 디바이스만이 아닌 일반적인 디바이스는 모두 제어할 수 있고 인터페이스를 통해 데이터를 주고 받을 수 있으며, 빅데이터 수집, 분석, 정보화 등을 통해 다양한 서비스를 제공하게 된다. 이러한 일들은 소프트웨어를 통해 유연하게 확장할 수 있고, 서비스 특성에 따라 소프트웨어를 설계하면 된다. 


 

<그림5> IoT 플랫폼의 예 


 



출처: 사물인터넷 - 개념, 구현기술 그리고 비즈니스 



IoT 플랫폼을 사용하게 되면 전통적인 소프트웨어 개발보다 현저히 줄어든 개발 기간을 확인할 수 있다(그림6). 왜냐하면, 센서와 디바이스, 네트워크와 인터페이스의 제어 방법이 플랫폼에서 제시될 수 있고, 빅데이터 수집과 분석 후 서비스를 제공하는 방법까지 플랫폼에서 정의될 수 있기 때문이다. 

 


<그림7> 전통적인 개발과 플랫폼을 사용한 개발의 비교 

 


출처: RENESAS 



그림7을 살펴보면, 위 쪽의 전통적인 개발에서는 드라이버, 미들웨어 설계까지 포함되어 있지만 아래는 그 부분이 모두 플랫폼에 포함되어 있기 때문에 별도의 설계나 개발이 필요하지 않다. 그리고, 기존 개발에서는 요구사항에 따라 기능에 필요한 하드웨어를 선택하고 주변 하드웨어를 설계하지만, 플랫폼 기반에서는 사용자가 사용하는 기능에 따라 플랫폼에서 사용자가 필요한 부분을 정의하고 적당한 소프트웨어를 개발하면 된다. 




사례 연구 


AWS 플랫폼 


AWS IoT 플랫폼은 디바이스에 SDK(Software Development Kit)을 제공하고, 게이트웨이를 통해 애플리케이션과 디바이스 간의 통신을 제공해주고 있다(그림8). 플랫폼 밖인 디바이스에서 정보를 쉽게 전달 받고 플랫폼의 인증과 다양한 개발 라이브러리 등도 활용할 수 있도록 SDK를 제공하고 있다. 

 


<그림8> AWS IoT 플랫폼 

 



출처: Amazon 



규칙 엔진(Rule Engine)을 사용하면 인프라를 관리할 필요 없이 디바이스에서 수집된 데이터를 처리, 분석할 수 있고, 비즈니스 규칙에 따라 다른 디바이스나 클라우드 서비스로 이를 변환하거나 전송할 수 있다. 그림에서 보는 것처럼 IoT 서비스에 따라 달라질 수 있는 디바이스나 애플리케이션을 제외한 부분을 플랫폼으로 구성하면서 아키텍처의 강건성이 매우 높아질 수 있고 개발 기간이나 복잡도를 낮출 수 있다. 


 

<참고사이트>


AWS IoT 플랫폼 https://aws.amazon.com/ko/iot/how-it-works/  





LG CNS의 IoT 플랫폼 


LG에서는 나날이 발전하고 있는 IoT 시장을 위해 6가지 기술을 정의하여 발전 전략을 수립했다. 아래를 살펴보면, 디바이스 관련 기술(⑤), 네트워크와 인터페이스 관련 기술(①②), 빅데이터 관련 기술(③)과 이를 통합 지원하는 기술(④⑥)로 구분된 것을 확인할 수 있다. 이를 통해, LG가 지향하는 바는 “다양한 디바이스로부터 수집된 대량의 센서 데이터들을 안정적으로 송/수신하고, 클라우드 환경에 저장된 데이터의 처리 및 분석을 통해 지능형 서비스까지 제공하는 플랫폼”이다. 


① Gateway와 Edge Device 관련 기술  

② 대량의 데이터를 안정적으로 전달할 수 있는 통신 기술 

③ 이벤트 처리와 데이터 분석 및 추천을 위한 빅데이터(Big Data) 관련 기술 

④ 위의 언급한 기술들의 Base 제공 및 융합을 지원할 플랫폼과 Enabler 관련 기술 

⑤ 인증/권한을 통한 데이터 보안뿐만 아니라 디바이스와 칩(Chip) 레벨의 보안 기술 

⑥ 사용자와 상호 작용할 수 있는 UI/UX 기술 



LG에서는 디바이스의 쉼 없는 발전과 폭발적으로 증가하는 데이터를 활용한 새로운 비즈니스가 IoT를 통해 나타난다고 하고 있다. 이 때, 특정되지 않은 디바이스나 서비스를 쉽게 받아들이고 표준화된 서비스를 통해 쉽게 IoT 서비스에 접근할 수 있도록 가이드 하고 있다. 그림9는 LG에서 제시하는 IoT 플랫폼인데, 다른 곳에서 제시하는 IoT 플랫폼과 레이아웃이 거의 유사하다.  디바이스→네트워크→서비스 로 이어지는 흐름을 기본으로 하고 있고, 다수의 디바이스와 사용자에 대한 인증, 보안이 추가되어 있기 때문이다. 



<그림9> LG CNS의 IoT 플랫폼 

 



출처: LG CNS 



기대 효과와 결론 


지금까지 IoT에 대해 아키텍처, 보안, 빅데이터 연계, 개발에 대해 살펴보았다. IoT는 소프트웨어보다는 많은 부분이 하드웨어 중심으로 서비스되어 왔던 것이 사실이다. 하지만, 기하급수적으로 늘어나는 IoT 관련 디바이스와 서비스로 인해 개별적으로 개발이 이루어지는 것은 매우 소모적이고 많은 손실을 가져온다. 체계적이고 표준화된 플랫폼 사용으로 IoT를 활용한 신규 서비스가 더 많이 늘어나기를 기대한다. 



참고자료 

□ https://aws.amazon.com/ko/iot/how-it-works/ 

□ http://www.lgcns.com/ 

출처 : 
http://www.sw-eng.kr/member/customer/Webzine/BoardView.do?boardId=00000000000000045453&currPage=1&searchPrefaceId=&titOrder=&writeOrder=&regDtOrder=&searchCondition=TOT&searchKeyword=IoT+%EC%82%AC%EB%A1%80+%EC%97%B0%EA%B5%AC